Specializations and Extensions of the Quantum Macmahon Master Theorem

نویسندگان

  • Dominique Foata
  • Guo-Niu Han
چکیده

We study some specializations and extensions of the quantum version of the MacMahon Master Theorem derived by Garoufa-lidis, Lê and Zeilberger. In particular, we obtain a (t, q)-analogue for the Cartier-Foata noncommutative version and a semi-strong (t, q)-analogue for the contextual algebra. R ´ ESUMÉ. Nousétudions certaines spécialisations et extensions de la version quantique du " Master Theorem " de MacMahon, ´ etabli par Garo-ufalidis, Lê et Zeilberger. En particulier, nous obtenons un (t, q)-analogue pour la version non-commutative de Cartier-Foata et un (t, q)-analogue semi-fort pour l'lagèbre contextuelle. 1. Introduction The Master Theorem derived by MacMahon [Ma15, vol. 1, p. 97] is a fundamental result in Combinatorial Analysis and has had many applications. To state it in a context relevant to its further noncommutative extensions we use the following notations. Let r be a positive integer and A the alphabet {1, 2,. .. , r}. A biword on A is a 2 × n matrix α = x 1 ···x n

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specializations and Extensions of the quantum

We study some specializations and extensions of the quantum version of the MacMahon Master Theorem derived by Garoufalidis, Lê and Zeilberger. In particular, we obtain a (t, q)-analogue for the Cartier-Foata noncommutative version and a semi-strong (t, q)-analogue for the contextual algebra.

متن کامل

Non-commutative Extensions of the Macmahon Master Theorem

We present several non-commutative extensions of the MacMahon Master Theorem, further extending the results of Cartier-Foata and Garoufalidis-LêZeilberger. The proofs are combinatorial and new even in the classical cases. We also give applications to the β-extension and Krattenthaler-Schlosser’s q-analogue. Introduction The MacMahon Master Theorem is one of the jewels in enumerative combinatori...

متن کامل

Non-Commutative Sylvester's Determinantal Identity

Sylvester’s identity is a classical determinantal identity with a straightforward linear algebra proof. We present combinatorial proofs of several non-commutative extensions, and find a β-extension that is both a generalization of Sylvester’s identity and the β-extension of the quantum MacMahon master theorem.

متن کامل

A New Proof of the Garoufalidis-Lê-Zeilberger Quantum MacMahon Master Theorem

We propose a new proof of the quantum version of MacMahon’s Master Theorem, established by Garoufalidis, Lê and Zeilberger. RÉSUMÉ. Nous proposons une nouvelle démonstration de la version quantique du Master Théorème de MacMahon, établi par Garoufalidis, Lê et Zeilberger.

متن کامل

An Inverse Matrix Formula in the Right-Quantum Algebra

The right-quantum algebra was introduced recently by Garoufalidis, Lê and Zeilberger in their quantum generalization of the MacMahon master theorem. A bijective proof of this identity due to Konvalinka and Pak, and also the recent proof of the right-quantum Sylvester’s determinant identity, make heavy use of a bijection related to the first fundamental transformation on words introduced by Foat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006